
TapBoard 2: Simple and Effective Touchpad-like
Interaction on a Multi-Touch Surface Keyboard

Sunjun Kim and Geehyuk Lee

School of Computing, KAIST
Daejeon 305-701, Republic of Korea

{kuaa.net, geehyuk}@gmail.com

ABSTRACT

We introduce TapBoard 2, a touchpad-based keyboard that

solves the problem of typing and pointing disambiguation.

The pointing interaction design of TapBoard 2 is nearly

identical to natural touchpad interaction, and its shared

workspace naturally invites bimanual pointing interaction.

To implement TapBoard 2, we developed a novel gesture

representation scheme for a systematic design and gesture

recognizer. A user evaluation showed that TapBoard 2

successfully supports collocated pointing and typing

interaction. It was able to disambiguate typing and pointing

actions with an accuracy of greater than 95%. In addition,

the typing and pointing performance of TapBoard 2 were

comparable to that of a separate keyboard and mouse. In

particular, the bimanual pointing operations of TapBoard 2

are highly efficient and strongly favored by participants.

Author Keywords

TapBoard; pointing; typing; multi-touch; gesture; touch

screen; touch pad; text entry system.

ACM Classification Keywords

H.5.2. Information interfaces and presentation (e.g., HCI):

User Interface

INTRODUCTION

The keyboard and mouse have been the de facto standard

input devices for text entry and pointing. One common

concern is the burden of frequently switching between

devices and the extensive space that they require [4]. To

address these concerns, many studies have tried to unify the

keyboard and mouse control spaces [3,4,7,18,19]. One

simple approach is to integrate an isometric joystick into a

keyboard [13]. However, an isometric joystick is not as

efficient as isotonic pointing devices [17].

Another approach to unifying keyboard and mouse control

spaces is to add a finger-tracking function to a keyboard.

FingerMouse [11], AirMouse [12], and FlowMouse [20] all

utilize a down-looking camera and set pointing space above

the typing space. For “on-the-keyboard” interaction, DGTS

[7], Touch & Type [4], Moky [3], and FlickBoard [18]

embed touch sensors on the keyboard and enable touchpad-

like interactions. In these cases, typing and pointing share

the same input space (the keyboard surface), and a method

of disambiguating strokes for typing and pointing is

employed. The disambiguating methods vary: a separate

mode button [3,4,20], special hand shape [11,12], or

software classifier [7,18] have been studied. However, the

current sensor on a physical keyboard is not sufficiently

fast and accurate for fluent cursor manipulation. In addition,

common concerns exist regarding irregular touch surfaces

[7] and limited touch sensor sensitivity because of thick

keyboard buttons [4].

Yet another approach to unifying keyboard and mouse

spaces is to use a large touch surface. A representative

work in this field is that of Westerman [19], which is based

on a FingerWorks TouchStream product. This touchpad-

based approach provides a precise and smooth pointing

operation compared to pointing on a physical keyboard. It

uses a two-finger drag and tap gesture for mouse operations.

However, a two-finger tap occasionally conflicts with

consecutive overlapping taps during fast typing [19]. Multi-

touch gestures on a flat keyboard are also used for different

purposes besides pointing. These include menu invocation

[5,8], alternative character insertion [1,5], and caret

manipulation [6,9]. Moving distance [1,6,8], dwell time [9],

and multi-touch [5,6,9] are often used to discriminate

keystrokes and gestures.

In this study, we introduce TapBoard 2, which solves the

problem of typing and pointing disambiguation by the

TapBoard concept of Kim et al. [9]. They showed that

people usually type on a touchscreen keyboard by tapping

and that a tapping-only soft keyboard is as fast and accurate

as an ordinary soft keyboard. These results may also be

valid with respect to a touchpad-based keyboard and

motivated us to implement a tapping-only soft keyboard on

a touchpad. One result is that we can use dragging gestures

longer than a tap threshold (450 ms and 5 mm) for pointing,

thereby solving the typing and pointing disambiguation

problem without requiring a mode key or special gestures.

The purpose of the current study is to verify the feasibility

and benefits of TapBoard 2. First, we show that the concept

of TapBoard effectively solves the typing and pointing

disambiguation problem. Second, we show that typing and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05...$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858452

mailto:Permissions@acm.org

pointing performance is preserved after the two inputs

share the same control space. Third, we display the benefit

of a large keyboard-sized touch surface that invites natural

bimanual touch operations. As an example, we show the

advantage of dividing pointing and clicking operations

between the two hands.

TAPBOARD 2

We implemented a TapBoard 2 prototype using a

touchscreen tablet computer that embeds a fast (100 fps)

and high-resolution (sub-millimeter) multi touch surface.

The tablet always displays a keyboard pattern and functions

as an external keyboard and mouse device for a host

computer.

TapBoard Gesture Recognizer

As shown in Figure 1, a touch point exists in any one of the

following three phases: Touched, Dwelling, and Moving. A

touch point starts at the Touched phase upon finger

touchdown. After a time threshold τ (450 ms [9]), it

automatically transitions to the Dwelling phase. Whether in

the Touched or Dwelling phase, when a touch point travels

more than a distance threshold δ (5 mm [1,9]), it enters the

Moving phase. At the Moving phase, touch point does not

change its phase until finger lift-off. The gesture recognizer

enumerates the number of touch points in each phase. We

define a system state as having three consecutive numbers

such as 213, which denotes two Touched points, one

Dwelling point, and three Moving points.

A state sequence then defines a TapBoard gesture. For

example, {000,100,000} defines a tap gesture, {000,

100,001} defines a drag gesture, and {000,100,

200,101,002} defines a two-finger dragging gesture.

The system declares that a gesture has been detected when

the latest state history matches the state sequence of the

gesture. For ease of illustration, consider a simple gesture

keyboard that moves a text caret with a one-finger dragging

gesture and scrolls the document with a two-finger

dragging gesture. Gesture definitions of such a keyboard

are shown in Table 1.

This historical record of gestures may prevent conflicts

between gestures more effectively than can state-based

gesture recognition. Suppose that a naïve gesture

recognizer maps 001 (one-finger moving) as a caret-move

gesture and 002 (two-finger moving) as a scroll gesture.

After performing a scroll gesture, a user may then release

two fingers separately within a fraction of a second. In this

case, the recognizer may detect a caret-move gesture,

which results in an unintended small caret movement. In

our system, the state sequence of the caret-move gesture

{000,100,001} does not match the state history of

releasing two fingers {002,001,000} and, thus, this

type of erratic caret movement cannot occur. This problem

may be addressed using a timer or context variable.

However, our approach enables a more systematic and

compact gesture recognizer implementation.

Touchpad-like Pointing Interaction on a Keyboard

Using the TapBoard gesture recognizer, we designed a

touchpad-like pointing interaction (Figure 2) that can

coexist with a tapping-only keyboard. Tapping functions as

a keystroke except when it follows a pointing gesture. For

our system, mapping a release-and-tap gesture to a left-

click event was required because this is a general touchpad

skill. However, this matches both keystroke {100,000}

and left-button {000,100,000} gestures and, thus,

represents a conflict. We treated this as an exception and

have the system execute a left-button gesture instead of

keystroke only for a tap within one second and 15 mm from

Touched Dwelling Moving

Distance>δ

Lifetime>τ Distance>δ

Figure 1. Three phases of a touch point.

We set τ = 450 ms and δ = 5 mm for our implementation.

Gesture Description

{000,100,000} Keystroke
{000,100,001} Caret move

{000,100,200,101,002} Document scroll

Table 1. Simple gesture keyboard showing TapBoard gesture

representation

Figure 2. Designed touchpad-like pointing interaction.

Gesture Description

{100,000},{200,100},{300,200} Keystroke
{100,001},{100,010} Mouse cursor move

{000,100,000},

{010,110,010},{001,101,001}
Mouse left-button click

{000,100,200,100,000},

 {001,101,201,101,001},

{010,110,210,110,010}

Mouse right-button

click

{101,011},{110,011},

{011,002},{110,020,011}

Mouse left-button

press and drag

{201,111,021},{120,021},

 {021,012},{021,012,003}

Mouse right-button

press and drag

{011,001},{010,000},{001,000}
Mouse left and right

release (if pressed)
{200,101,002} Mouse-wheel scroll

Table 2. Interaction represented by TapBoard gesture

definitions. Underlined items represent conflicting gestures (see

text).

the previously touched pointing gesture. The other mouse

operations are defined without conflicts. One-finger

dragging is used to control a mouse cursor. Two-finger

dragging is used for mouse-wheel scrolling. During one-

finger dragging, additional finger touches function as

mouse-button clicks, a one-finger tap functions as a left

click, and a two-finger tap functions as a right click.

Dragging with a button pressed is supported similarly by

including Dwelling touches. The other hand should

preferably perform these mouse-button gestures. In addition,

we include dwell+taps as mouse-button gestures to enable a

click without a cursor move.

EVALUATION

To evaluate the proposed design, we conducted a within-

subject user study to answer the following questions.

1) Does pointing interfere with typing or vice versa?

2) Does the combined pointing-typing design impair typing

and pointing performance?

3) Does bimanual interaction offer any advantages

regarding pointing performance?

Tasks and Metrics

We designed a task that requires frequent switching

between pointing and typing (Figure 3). First, a start point

appears at the screen center, and clicking it starts a 2D Fitts’

law pointing task [16]. We used three distance (D = 100,

200, and 800 px) and three target diameter (W = 40, 60, and

80 px) levels. Index of difficulty (ID) was calculated using

the Shannon formulation ID = log2 (D/W+1). We designed

IDs to be distributed evenly from 1.0 to 4.5. Clicking a

target point ends the pointing task. An effective index of

difficulty (IDe) was calculated based on [16]. Following the

pointing task, a textbox appears that begins a typing task. A

word preview appears during the pointing task to minimize

the effect of cognitive load on task time. Words of 5-7

characters are randomly chosen from the Enron corpus [10].

Pressing the Enter key ends the typing task.

In our study, as the two tasks were repeated, we measured

the following metrics. For transition cost metrics, we

measured the interval between the start of the new task – in

other word, end of the typing task – and the first mouse

move event (i.e., Typing to Pointing transition time or T2P),

and the interval between successful target selection and the

first keystroke (i.e., Pointing to Typing transition time or

P2T). For pointing performance metrics, we calculated

Throughput = MT (movement time) / IDe, and the number

of failed target selections (Targeting Error). For typing

performance metrics, we measured Typing Speed in word

per minute (WPM) and Total Error Rate [15]. For

interference metrics, we measured Keyboard Error, which

counts the number of keystrokes during the Fitts’ law test,

and Mouse error, which counts the number of mouse move

or click events during typing. Finally, we measured the

total task completion time (Total Time).

Conditions and Apparatus

We established three Conditions: Separated-Tap (ST),

Combined-Tap (CT), and Combined-AddFinger (CA).

ST is the base condition that simulates a separate touchpad

and keyboard configuration. It uses two tablet devices

adjacently placed. One device simulates a soft keyboard

and the other simulates a touchpad. The keyboard device

interprets all touches as keystrokes, and the touchpad

device interprets a drag gesture as a mouse move and a tap

as a click gesture.

CT and CA are test conditions that use the proposed

combined pointing-typing method. A single tablet device

functions as both keyboard and touchpad. Both conditions

share the same implementation. The sole difference

concerns click-gesture choice. In our study, we instructed

users to employ release-and-tap with CT and an additional

finger tap with CA for the left-click gesture.

We implemented ST, CT, and CA on Microsoft Surface

Pro 3 touchscreen tablets. To mimic touchpad-like

appearance, we configure the tablets to show only a

QWERTY layout with 18.2 x 18.6 mm keys, except the

touchpad device for ST that displays only a black screen.

The tablets generated keyboard and mouse events, and an

Arduino Leonardo board interpreted these events to legacy

USB keyboard and mouse packets. A separate laptop

conducted the experiment tasks driven by the USB packets.

The measured latency between the tablets and laptop were

50 ms on average. In our system, a keystroke highlights the

corresponding soft key and generates a short beep sound

(800 Hz tone, 10 ms). In CT, a small circle indicating the

“clickable” area for the release-and-tap gesture is shown on

the keyboard. Mouse acceleration, keyboard size, and

device orientation were identical across conditions and

participants.

Procedure

We recruited 18 paid participants (nine males and nine

females, average age of 21.5) who were familiar with

QWERTY keyboards. All participants were right-handed

and operated a mouse with that dominant hand. A “block”

in our study consists of all three conditions and 27 trial runs

of pointing and typing tasks for each condition. Each

participant completed three blocks. Thus, 243 trials (3 x 3 x

27) in total were conducted. We counterbalanced the order

of conditions across the participants. The first block was a

practice block, and we analyzed the data from the last two

blocks.

Figure 3. Task sequence consists of pointing and typing

Results

Table 3 shows the average results of the second and third

blocks ordered by the task flow illustrated in Figure 3. The

study was a 2 (Block) × 3 (Condition) within-subject design.

We performed a repeated measures ANOVA. Condition

exhibited significant main effects on Throughput, Keyboard

Error, P2T, Typing Speed and Mouse Error. Block

exhibited significant main effects on T2P and Throughput.

There were significant Condition * Block interaction on

T2P and P2T. For the detailed results, refer to Appendix 1.

As a post hoc test, we performed pairwise Tukey’s HSD

tests between Conditions with α = 0.05. Boldfaced values

in Table 3 indicate the best performance groups. We

summarize the major findings below.

 For T2P, the pairwise comparison failed to find a

difference between conditions. For P2T, the fastest

condition was CT, followed by ST and CA.

 For pointing performance, CA exhibited the highest

Throughput. No difference was found in Targeting

Error.

 For typing performance, the pairwise comparison failed

to find a difference between conditions, although

Condition exhibited a main effect on Typing Speed. No

difference was found in Total Error Rate.

 For interference metrics, CA produced more Keyboard

Errors than did ST and CT. CT and CA generated more

Mouse Errors than did ST.

Subjective Ratings

We asked participants to rank the exposed conditions. We

then collected comments about conditions. The average

ranks were 1.22 (CA), 2.22 (CT), and 2.56 (ST). CA was

the most favored (15 of 18 participants ranked it as first).

Afterwards, we provided instructions on mouse operations

(Figure 2). Participants rated the ease of use on a seven-

point Likert scale. Left click received a score of 6.78, left

drag 6.00, right click 5.89, and right drag 5.16.

Discussion

ST is better in disambiguation and typing performance.

However, frequent device switching caused participant

fatigue. CT improves transition time and is comparable to

ST regarding pointing and typing performance. Participants

appreciated short hand movements, but timeout-based click

interaction produced strain. Bimanual interaction generated

the best Throughput but the slowest P2T times for CA.

Forcing a left finger to release to complete a mouse clicks

may reduce P2T time in CA, whereas other conditions

enabled participants to prepare left-hand keys. CA also

exhibits the worst Keyboard Error. Raw log analysis

showed that participants often release two fingers

simultaneously for left-button click gestures, which records

as {001,101,100,000} and fails to match predefined

gestures. Participants then typed a word, which generated

keystrokes before successful target selection. Nevertheless,

participants mostly favored CA for its combined workspace

and continuous bimanual target selection method.

Both CT and CA exhibited more Mouse Errors than did

ST, but 88% of errors were move events. Participants

sometimes move their fingers away from a key in order to

cancel a keystroke and then swipe on the backspace key to

remove an entire word. ST ignores such dragging

movements, whereas CT and CA interpreted them as

mouse-move events. Filtering out these mouse-move errors

eliminated Mouse Error differences (Table 3 *).

The cursor-moving gesture requires some slack (5 mm) or

dwelling (450 ms). Most participants initiated a cursor

move by means of a shaking gesture [2], in which case the

spatial slack becomes less pronounced. However, some

participants complained that the system was unresponsive

during subtle cursor manipulation. Here, the moved

distance falls within the slack threshold and dwelling

activates the cursor. We may address this limitation in the

future by incorporating a probabilistic approach [14].

CONCLUSION

We developed TapBoard 2, a pointing-typing keyboard

based on a systematic gesture recognizer. In our study, the

system distinguished typing and pointing with over 95%

accuracy. Moreover, typing and pointing performance with

the combined interface was comparable to that of the base

condition ST. Finally, because of bimanual interaction, CA

outperformed other conditions in pointing Throughput, and

participants strongly favored this.

A future study will extend the application of our design.

TapBoard 2 functionality can be easily embedded in many

touch-sensing platforms such as touchscreen tablets,

tabletops, laser projection keyboards, flat keyboards such as

Microsoft Surface Touch Cover, and glass keyboards. This

design can also be applied to physical keyboards as soon as

they are equipped with a fast and reliable touch-sensing

technology.

Metrics ST CT CA

T2P Time (ms) 497 473 469

Targeting Error (%) 2.6 1.9 2.2

Throughput (bits/s) 3.1 2.9 3.9

Keyboard Error (%) 0.7 1.2 3.9

P2T Time (ms) 579 490 640

Typing Speed (WPM) 39.6 37.6 37.4

Total Error Rate (%) 5.6 6.9 7

Mouse Error (%) 0.6 3.4 2.9

* Mouse Click Error (%) 0.4 0.3 0.2

Total Task Time (ms) 4944 4868 4761

Table 3. The average results of blocks 2 and 3

(Boldface values indicate the best performance groups.)

ACKNOWLEDGMENTS

This work was supported by Hancom Inc. Its intellectual

property rights reserved by KAIST and Hancom.

REFERENCES

1. Ahmed Sabbir Arif, Michel Pahud, Ken Hinckley, and

Bill Buxton. 2014. Experimental study of stroke

shortcuts for a touchscreen keyboard with gesture-

redundant keys removed. In Proceedings of GI '14.

Canadian Information Processing Society, Toronto,

Ont., Canada, Canada, 43-50.

2. Robert Ball and Chris North, Analysis of user behavior

on high-resolution tiled displays. 2005. Human-

Computer Interaction-INTERACT 2005.Vol 3585 of

the series Lecture Notes in Computer Science: 350-

363. http://doi.org/10.1007/11555261_30

3. Enyoung Cho, Moky: invisible touchpad keyboard.

2015. Retrieved Sep. 7, 2015 from

https://www.indiegogo.com/projects/moky-invisible-

touchpad-keyboard

4. W. Fallot-Burghardt, M. Fjeld, C. Speirs, S.

Ziegenspeck, H. Krueger, and T. Läubli. 2006.

Touch&Type: a novel pointing device for notebook

computers. In Proceedings of NordiCHI '06. 465-468.

http://doi.acm.org/10.1145/1182475.1182538

5. Leah Findlater, Ben Lee, and Jacob Wobbrock. 2012.

Beyond QWERTY: augmenting touch screen

keyboards with multi-touch gestures for non-

alphanumeric input. In Proceedings of CHI '12. ACM,

2679-2682.

http://dx.doi.org/10.1145/2207676.2208660

6. Vittorio Fuccella, Poika Isokoski, and Benoit Martin.

2013. Gestures and widgets: performance in text

editing on multi-touch capable mobile devices.

In Proceedings of CHI '13. ACM, 2785-2794.

http://dx.doi.org/10.1145/2470654.2481385

7. Iman Habib, Niklas Berggren, Erik Rehn, Gustav

Josefsson, Andreas Kunz, and Morten Fjeld. 2009.

Dgts: Combined typing and pointing. Human-

Computer Interaction-INTERACT 2009, Vol. 5727 of

the series Lecture Notes in Computer Science: 232-

235. http://doi.org/10.1007/978-3-642-03658-3_30

8. Poika Isokoski. 2004. Performance of menu-

augmented soft keyboards. In Proceedings of CHI '04.

ACM, 423-430.

http://dx.doi.org/10.1145/985692.985746

9. Sunjun Kim, Jeongmin Son, Geehyuk Lee, Hwan Kim,

and Woohun Lee. 2013. TapBoard: making a touch

screen keyboard more touchable. In Proceedings of

CHI '13. ACM, 553-562.

http://doi.acm.org/10.1145/2470654.2470733

10. Bryan Klimt and Yiming Yang. 2004. The enron

corpus: A new dataset for email classification research.

Machine learning: ECML. Springer Berlin Heidelberg,

217-226. http://doi.org/10.1007/978-3-540-30115-8_22

11. Thomas A. Mysliwiec, 1994. Fingermouse: A freehand

computer pointing interface. In Proceeding of

International Conference on Automatic Face and

Gesture Recognition, 372-277.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1

.1.54.4906

12. Michael Ortega and Laurence Nigay. 2009. AirMouse:

Finger gesture for 2D and 3D interaction. Human-

Computer Interaction–INTERACT 2009. Springer

Berlin Heidelberg, 214-227.

http://doi.org/10.1007/978-3-642-03658-3_28

13. Joseph D. Rutledge and Ted Selker. 1990. Force-to-

motion functions for pointing. In Proceedings of

INTERACT '90. 701-706.

14. Julia Schwarz, Scott Hudson, Jennifer Mankoff, and

Andrew D. Wilson. 2010. A framework for robust and

flexible handling of inputs with uncertainty.

In Proceedings of UIST '10. ACM, New York, NY,

USA, 47-56.

http://dx.doi.org/10.1145/1866029.1866039

15. R. William Soukoreff and I. Scott MacKenzie. 2003.

Metrics for text entry research: an evaluation of MSD

and KSPC, and a new unified error metric. In

Proceedings of CHI '03, ACM, 113-120.

http://doi.acm.org/10.1145/642611.642632

16. William Soukoreff and I. Scott MacKenzie. 2004.

Towards a standard for pointing device evaluation,

perspectives on 27 years of Fitts’ law research in HCI.

International journal of human-computer studies, 61, 6

(December 2004): 751-789.

http://dx.doi.org/10.1016/j.ijhcs.2004.09.001

17. Christian Sutter and Martina Ziefle, 2005. Interacting

with notebook input devices: An analysis of motor

performances and user’s expertise. Human Factors, 47:

169-187. http://doi.org/10.1518/0018720053653893

18. Ying-Chao Tung, Ta Yang Cheng, Neng-Hao Yu,

Chiuan Wang, and Mike Y. Chen. 2015. FlickBoard:

Enabling Trackpad Interaction with Automatic Mode

Switching on a Capacitive-sensing Keyboard. In

Proceedings of CHI '15. ACM, 1847-1850.

http://doi.acm.org/10.1145/2702123.2702582

19. Wayne Westerman. 1999. Hand tracking, finger

identification, and chordic manipulation on a multi-

touch surface. Doctoral dissertation, University of

Delaware.

20. Andrew D. Wilson, and Edward Cutrell. 2005.

FlowMouse: a computer vision-based pointing and

gesture input device, Human-Computer Interaction-

INTERACT. Springer Berlin Heidelberg, 565-578.

http://doi.org/10.1007/11555261_46

http://doi.org/10.1007/11555261_30
https://www.indiegogo.com/projects/moky-invisible-touchpad-keyboard
https://www.indiegogo.com/projects/moky-invisible-touchpad-keyboard
http://doi.acm.org/10.1145/1182475.1182538
http://dx.doi.org/10.1145/2207676.2208660
http://dx.doi.org/10.1145/2470654.2481385
http://doi.org/10.1007/978-3-642-03658-3_30
http://dx.doi.org/10.1145/985692.985746
http://doi.acm.org/10.1145/2470654.2470733
http://doi.org/10.1007/978-3-540-30115-8_22
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4906
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4906
http://doi.org/10.1007/978-3-642-03658-3_28
http://dx.doi.org/10.1145/1866029.1866039
http://doi.acm.org/10.1145/642611.642632
http://dx.doi.org/10.1016/j.ijhcs.2004.09.001
http://doi.org/10.1518/0018720053653893
http://doi.acm.org/10.1145/2702123.2702582
http://doi.org/10.1007/11555261_46

APPENDIX

We present the per block results, the repeated measures

(RM) ANOVA results, and the post hoc test results, which

we omitted in Table 3, in the following tables.

 Block 2 Block 3

Metrics ST CT CA ST CT CA

T2P Time (ms) 510 493 472 483 454 465

Targeting Error (%) 2.7 1.6 1.4 2.5 2.1 2.9

Throughput (bits/s) 3.08 2.88 3.79 3.12 2.98 4.00

Keyboard Error (%) 1.0 1.0 4.1 0.4 1.4 3.7

P2T Time (ms) 591 489 645 567 492 634

Typing Speed (WPM) 39.7 37.7 36.5 39.5 37.5 38.2

Total Error Rate (%) 5.3 6.7 6.7 5.8 7.1 7.2

Mouse Error (%) 0.4 3.7 3.3 0.8 3.1 2.5

* Mouse Click Error (%) 0.4 0.4 0.2 0.4 0.2 0.2

Total Task Time (ms) 4961 4846 4807 4926 4889 4715

Table 4. Complete results from blocks 2 and 3

 Condition
F(2,16), α=.05

Block
F(1,17), α=.05

Interaction
F(2,16), α=.05

Metrics F-val p-val F-val p-val F-val p-val

T2P Time (ms) 0.72 .500 15.2 < .001 3.72 .047

Targeting Error (%) .516 .607 .938 .346 .991 .393

Throughput (bits/s) 74.3 < .001 12.3 .002 1.53 .247

Keyboard Error (%) 8.54 .003 .321 .578 .634 .543

P2T Time (ms) 25.0 < .001 .783 .388 25.0 < .001

Typing Speed (WPM) 8.75 .003 .511 .484 1.73 .208

Total Error Rate (%) 2.52 .112 .994 .333 0.01 .989

Mouse Error (%) 5.63 .014 .747 .395 .974 .399

* Mouse Click Error (%) 1.60 .233 .191 .668 .056 .946

Total Task Time (ms) 1.70 .214 .232 .636 .579 .572

Table 5. RM-ANOVA results

Metrics Block 2 Block 3

T2P Time (ms) ST = CT = CA ST = CT = CA

Throughput (bits/s) CA > ST = CT

Keyboard Error (%) CA > ST = CT

P2T Time (ms) ST = CA > CT
CA=ST, ST=CT

CA > CT

Typing Speed (WPM) ST = CT = CA

Mouse Error (%) CT = CA > ST

Table 6. Conditions sorted by Tukey’s HSD test results. The

insignificant metrics according to RM-ANOVA results are

excluded. We performed block-wise analyses for T2P and P2T,

which exhibited Condition*Block interactions according to

RM-ANOVA results.

